
智能软件与⼯程学院
School of Intelligent Software and Engineering

图及其遍历
Graphs and Graph Traversal

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Graphs are Everywhere!
• Transportation Networks.

‣ Nodes: Airports; Edges: Nonstop flights.

• Communication Networks.

‣ Nodes: Computers; Edges: Physical links.

• Social Networks.

‣ Nodes: People; Edges: Friendship.

• …

智能软件与⼯程学院
School of Intelligent Software and Engineering

Followed by many graph problems

• Nodes: Countries;
Edges: Neighboring
countries.

• Question of Interest:
Chromatic number?

• Nodes: Exams;
Edges: Conflicts.

• Question of Interest:
Chromatic number?

• Nodes: States ;
Edges: Legit moves

• Question of Interest:
Shortest path?

Coloring Maps Scheduling Exams Solving Sliding Puzzle

• Nodes: States ;
Edges: Legit moves

• Question of Interest:
God's Number?

Solving Rubik’s Cube

1 3
4 2 5
7 8 61 3

4 2 5
7 8 6

1 34
2 5

7 8 6

1 3
4

2
5

7 8 6

1 3
4 2 5
7 8 6

1 34
2 5
7 8 6

1 34
2 57
8 6

1 3
4

2
5

7 8
6

minimal number of turns?微积分

软⼯1

编译

离散

线代
算法

概率

操作系统组原

both taken by at least one student

智能软件与⼯程学院
School of Intelligent Software and Engineering

Representing graphs in computers
• Adjacency Matrix (邻接矩阵)

‣ Consider a graph , where and

‣ The Adjacency Matrix of is an matrix where

-

‣ The matrix will be symmetry if is undirected.

‣ The matrix will always cost memory, regardless of .

G = (V, E) |V | = n |E | = m

G n × n A = (aij)

aij = {1 if (i, j) ∈ E
0 otherwise

G

Θ(n2) m

0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

1 2 3

54 6

0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Quick Question: What does mean, if anything?A2

1
2
3
4
5

1 2 3 4 5
1
2
3
4
5
6

1 2 3 4 5 6

1 2

3

45

Simple Graph
without self loop

智能软件与⼯程学院
School of Intelligent Software and Engineering

Representing graphs in computers
• Adjacency List (邻接表)

‣ Consider a graph , where and

‣ The Adjacency List of is a collection of lists:

- One for each vertex

- In the list for , vertex exists iff edge

‣ Each edge appears twice if is undirected.

‣ The space cost is

G = (V, E) |V | = n |E | = m

G n

u ∈ V

u v (u, v) ∈ E

G

Θ(n + m)

1 2 3

54 6

2
1
2
2
4

5 ∅

5
4 ∅

5
1

3 4 ∅

3 ∅

2 ∅

1 2

3

45

1
2
3
4
5

2
5 ∅

6
2 ∅

4 ∅

6 ∅

4 ∅

5 ∅

1
2
3
4
5
6

智能软件与⼯程学院
School of Intelligent Software and Engineering

Adjacency Matrix and Adjacency List

• Fast Query: Are and neighbors?

• Slow Query: Find me any neighbor of .

• Slow Query: Enumerate all neighbors of .

u v

u

u

Adjacency Matrix

• Fast Query: Find me any neighbor of .

• Fast Query: Enumerate all neighbors of .

• Slow Query: Are and neighbors?

u

u

u v

Adjacency List

Queries: What types of queries are needed and/or frequent?
Space usage: Is the graph dense or sparse? Important question to ask

Trade-offs

智能软件与⼯程学院
School of Intelligent Software and Engineering

Searching in a Graph (or, Graph Traversal)

• Goal: Start at source node and find some node .

• Or: Visit all nodes reachable from .

s t

s

• Two Basic Strategies:

‣Breadth-First Search (BFS)

‣Depth-First Search (DFS)

• Many applications, beside searching and traversal!

• Usually use adjacency list when discussing BFS/DFS. (At least in this course…)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Breadth-First Search

智能软件与⼯程学院
School of Intelligent Software and Engineering

d = 2

d = 1

d = 0

Breadth-First Search (BFS)
E S A

D C B

S

A C D E

B

Visit all distance nodes,
before visit any distance

 node.

d

d + 1

These nodes are neighbors of 
distance 1 nodes!

• Basic Idea of BFS:

‣ Start at the source node ;

‣ Visit other nodes (reachable from s) “layer by layer”.

• More precise description:

‣ Start at the source node ;

‣ Visit nodes at distance 1 from ;

‣ Visit nodes at distance 2 from ;

‣ …

s

s

s

s

智能软件与⼯程学院
School of Intelligent Software and Engineering

BFS Implementation
• How to implement BFS? (Hint: recall traversal-by-layer in trees)

‣ Use a FIFO Queue!

• Nodes have 3 status:

‣ Undiscovered (): Not in queue yet.

‣ Discovered but not visited (): In queue but not
processed.

‣ Visited (): Ejected from queue and processed.BLACK

GRAY

WHITE

BFSSkeleton(G, s):
for each u in V

u.dist := INF, u.discovered := False
s.dist := 0, s.discovered := True
Q.enque(s)
while !Q.empty()

 u := Q.dequeue()
 for each edge (u, v) in E

 if !v.discovered
v.dist := u.dist + 1
v.discovered := True
Q.enque(v)

We can “store” a shortest path, instead of only “computing” the length of the path —> by additionally recording the node’s parent info.

智能软件与⼯程学院
School of Intelligent Software and Engineering

BFS Implementation
BFS(G, s):
for each u in V

 u.c := WHITE, u.d := INF, u.p := NIL
s.c := GRAY , s.d := 0, s.p := NIL
Q.enque(s)
while !Q.empty()

 u := Q.dequeue()
 u.c := BLACK
 for each edge (u, v) in E

 if v.c = WHITE
v.c := GRAY
v.d := u.d + 1
v.p := u
Q.enque(v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Sample Execution
∞ 0 ∞

∞∞ ∞

∞

∞

r s t u

v w x y

Q s
0

（a）

1 0 ∞

1∞ ∞

∞

∞

r s t u

v w x y

Q w
1

（b） r
1

1 0 2

1∞ 2

∞

∞

r s t u

v w x y

Q r
1

（c） t x
2 2

1 0 2

12 2

∞

∞

r s t u

v w x y

Q t
2

（d） x v
2 2

（e）
1 0 2

12 2

3

∞

r s t u

v w x y

Q x
2

v u
2 3

（f）
1 0 2

12 2

3

3

r s t u

v w x y

Q v
2

u y
3 3

u
3

（g） y
3

1 0 2

12 2

3

3

r s t u

v w x y

Q （h） y
3

1 0 2

12 2

3

3

r s t u

v w x y

Q （i）
1 0 2

12 2

3

3

r s t u

v w x y

Q ∅

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of BFS
• Runtime of BFS? (Assuming G is connected.)

• “While” loop times.

‣ Each node in at most once.

• “For” loop times.

‣ Each edge visited at most once or twice.

• Runtime of BFS is .

Θ(n)

Q

Θ(m)

Θ(n + m)

What if we use adjacency matrix instead of adjacency list?

BFS(G, s):
for each u in V

 u.c := WHITE, u.d := INF, u.p := NIL
s.c := GRAY , s.d := 0, s.p := NIL
Q.enque(s)
while !Q.empty()

 u := Q.dequeue()
 u.c := BLACK
 for each edge (u, v) in E

 if v.c = WHITE
v.c := GRAY
v.d := u.d + 1
v.p := u
Q.enque(v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness and Properties of BFS

Proof:

• [only if] If a node is not reachable from , then BFS does not visit it, since BFS only
moves along edges.

• [if] If a node is reachable from , then BFS visits it.

‣ Claim: For all , all nodes within hops of are visited.

- [Basis]: Clearly is visited.

- [Hypothesis]: All nodes within hops of are visited.

s

s

k ≥ 0 k s

s

k − 1 s

Theorem BFS visits a node iff it is reachable from .s

智能软件与⼯程学院
School of Intelligent Software and Engineering

Will this really happen?!

Correctness and Properties of BFS

- [Inductive Step]: Consider a node that is hops away from . Let be
’s neighbor on (one of) ’s shortest path back to

By induction hypothesis, gets visited.

When BFS visits , node is already GRAY or BLACK, or will be put in .

Either way, eventually gets visited.

v k s u
v v s

u

u v Q

v

Theorem BFS visits a node iff it is reachable from .s

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness and Properties of BFS

• [Proof Idea] Use induction to show:

‣ For all , there is a moment at which:

- (a) every node with dist(s, u) correctly computes u.dist;

- (b) every other node has v.dist = ;

- (c) contains exactly the nodes hops away from .

d ≥ 0

u ≤ d

v ∞

Q d s

Theorem BFS correctly computes u.dist, for every node that is reachable from u s

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness and Properties of BFS

• is a breadth-first tree, which can print on a shortest path from any
node to the source node . Here:

‣ ,

‣ .

Gp = (Vp, Ep)
v s

Vp = {u ∈ V : u . p ≠ NIL} ∪ {s}

Ep = {(u . p, u) : u ∈ Vp − {s}}

Theorem BFS correctly computes u.dist, for every node that is reachable from u s

Corollary For any that is reachable from , one of the shortest path from
 to is a shortest path from to followed by the edge

u ≠ s s
s u s u . p (u . p, u)

1 0 2

12 2

3

3

r s t u

v w x y

0

s

1

r
1

w

2
v

2 2

33

t

u

x

y

智能软件与⼯程学院
School of Intelligent Software and Engineering

One last note on BFS
• What if the graph is not connected?

‣ Easy, do a BFS for each connected component!

BFS(G):
for each u in V

 u.c := WHITE, u.d := INF, u.p := NIL
for each u in V
if u.c = WHITE

u.c := GRAY , u.d := 0, u.p := NIL
Q.enque(u)
while !Q.empty()

 v := Q.dequeue()
 v.c := BLACK
 for each edge (v, w) in E

 if w.c = WHITE
 w.c := GRAY
 w.d := v.d + 1
 w.p := w
 Q.enque(w)

Runtime of this procedure?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-First Search

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-First Search (DFS)
• Much like exploring a maze:

‣ Use a ball of string and a piece of chalk.

‣ Follow path (unwind string and mark at
intersections), until stuck (reach dead-end or
already-visited place).

‣ Backtrack (rewind string), until find unexplored
neighbor (intersection with unexplored direction).

‣ Repeat above two steps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-First Search (DFS)
• How to do this for a graph, in computer?

‣ Chalk: boolean variables.

‣ String: a stack.

DFSSkeleton(G, s):
s.visited := True
for each edge (s, v) in E
if !v.visited

DFSSkelecton(G, v)

D A B

CH I

E

JFG

DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited
 u.visited := True
for each edge (u, v) in E

Q.push(v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

DFSSkeleton(G, s):
s.visited := True
for each edge (s, v) in E
if !v.visited

DFSSkelecton(G, v)

DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited
 u.visited := True
for each edge (u, v) in E

Q.push(v)

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A
A B

D C

BCDA
A B

D C

CBCDA
A B

D C

CBCDA

A B

D C

BCDA
A B

D C

CDA
A B

D C

ADA
A B

D C

A B

D C

DA

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-First Search (DFS)
• What if the graph is not (strongly) connected?

‣ Do DFS from multiple sources.
DFSAll(G):
for each node u in V

v.visited := False
for each node u in V

if !u.visited
DFSSkelecton(G, u)

DFSSkeleton(G, s):
s.visited := True
for each edge (s, v) in E

if !v.visited
DFSSkelecton(G, v)

DFSAll(G):
for each node u in V

v.visited := False
for each node u in V

if !u.visited
DFSIterSkelecton(G, u)

DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited
 u.visited := True

for each edge (u, v) in E
Q.push(v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-First Search (DFS)
• Each node have 3 status during DFS:

‣ Undiscovered []: before calling DFSSkeleton(G,u)

‣ Discovered []: during execution of DFSSkeleton(G,u)

‣ Finished []: DFSSkeleton(G,u)returned

• DFS(G,u) builds a tree among nodes reachable from :

‣ Root of this tree is .

‣ For each non-root, its parent is the node that makes it turn GRAY.

• DFS on entire graph builds a forest.

u

u

u

DFSAll(G):
for each node u in V

u.color := WHITE
u.parent := NIL

for each node u in V
if u.color = WHITE

DFS(G, u)

DFS(G, s):
s.color := GRAY
for each edge (s, v) in E
if v.color = WHITE
 v.parent := s

DFS(G, v)
s.color := BLACK

BLACK

GRAY

WHITE

智能软件与⼯程学院
School of Intelligent Software and Engineering

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-First Search (DFS)
• DFS provides (at least) two chances to process each node:

‣ Pre-Visit: WHITE GRAY

‣ Post-Visit: GRAY BLACK

→

→

DFSAll(G):

for each node u in V
u.color := WHITE
u.parent := NIL

for each node u in V
if !u.visited

DFS(G, u)

DFS(G, s):

s.color := GRAY
for each edge (s, v) in E

if v.color = WHITE
 v.parent := s

DFS(G, v)
s.color := BLACK

PreProcess(G) PreVisit(s)

PostVisit(s)

• Sample application: Track active intervals of nodes

‣ Clock ticks whenever some node’s color changes.

‣ Discovery time: when the node turns to GRAY.

‣ Finish time: when the node turns to BLACK.

PreProcess(G):
time := 0

PreVisit(s):
time := time + 1
s.d := time

PostProcess(G):
time := time + 1
s.f := time

Note: here it
indicates the

discovery time

智能软件与⼯程学院
School of Intelligent Software and Engineering

A B

D C

DFSAll(G):

for each node u in V
u.color := WHITE
u.parent := NIL

for each node u in V
if !u.visited

DFS(G, u)

PreProcess(G)

DFS(G, s):

s.color := GRAY
for each edge (s, v) in E

if v.color = WHITE
 v.parent := s

DFS(G, v)
s.color := BLACK

PreVisit(s)

PostVisit(s)

PreProcess(G):
time := 0

PreVisit(s):
time := time + 1
s.d := time

PostProcess(G):
time := time + 1
s.f := time

A B

D C

1,?

A B

D C

1,? 2,?

A B

D C

1,? 2,?

3,?

A B

D C

1,? 2,?

3,4

A B

D C

1,? 2,5

3,4

A B

D C

1,? 2,5

3,46,?

A B

D C

1,? 2,5

3,46,7

A B

D C

1,8 2,5

3,46,7

智能软件与⼯程学院
School of Intelligent Software and Engineering

Runtime of DFS
• Time spent on each node:

‣ DFS(G,u) is called once for each node .

• Time spent on each edge:

‣ Each edge is examined times.

O(1)

u

O(1)

O(1)

DFSAll(G):

for each node u in V
u.color := WHITE
u.parent := NIL

for each node u in V
if !u.visited

DFS(G, u)

PreProcess(G)

DFS(G, s):

s.color := GRAY
for each edge (s, v) in E

if v.color = WHITE
 v.parent := s

DFS(G, v)
s.color := BLACK

PreVisit(s)

PostVisit(s)

PreProcess(G):
time := 0

PreVisit(s):
time := time + 1
s.d := time

PostProcess(G):
time := time + 1
s.f := time

Total runtime: O(n + m)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Classification of edges
• DFS process classify edges of input graph into four types.

‣ Tree Edges: Edges in the DFS forest.

‣ Back Edges: Edges connecting to an ancestor in a DFS tree.

‣ Forward Edges: Non-tree edges connecting to a descendant in a DFS tree.

‣ Cross Edges: Other edges. (Connecting nodes in same DFS tree with no ancestor-
descendant relation, or connecting nodes in different DFS trees.)

(u, v) u v

(u, v) u v

s u w

vt

s u w

vt

TreeBack

Forward

Cross

智能软件与⼯程学院
School of Intelligent Software and Engineering

1/

u v w

x y z

1/

u
2/

v w

x y z

1/

u
2/

3/

v w

x y z

1/

u
2/

4/ 3/

v w

x y z

1/

u
2/

4/ 3/

v w

x y z

1/

u
2/

4/5 3/

v w

x y z

1/

u
2/

4/5 3/6

v w

x y z

1/

u
2/7

4/5 3/6

v w

x y z

1/

u
2/7

4/5 3/6

v w

x y z

1/8

u
2/7

4/5 3/6

v w

x y z

1/8

u
2/7 9/

4/5 3/6

v w

x y z

1/8

u
2/7 9/

4/5 3/6

v w

x y z

1/8

u
2/7 9/

4/5 3/6 10/

v w

x y z

1/8

u
2/7 9/

4/5 3/6 10/

v w

x y z

1/8

u
2/7 9/

4/5 3/6 10/11

v w

x y z

1/8

u
2/7 9/12

4/5 3/6 10/11

v w

x y z

Tree Back Forward Cross

智能软件与⼯程学院
School of Intelligent Software and Engineering

Properties of DFS: Parenthesis Theorem

• For any two nodes and , exactly one of following holds:

‣ (a) [u.d, u.f] and [v.d, v.f] are disjoint, and have no ancestor-descendant relation in
the DFS forest;

‣ (b) [u.d, u.f] ⊂ [v.d, v.f], and is a descendant of in a DFS tree;

‣ (c) [v.d, v.f] ⊂ [u.d, u.f], and is an ancestor of in a DFS tree.

u v

u, v

u v

u v

Theorem: Active intervals of two nodes are either: (a) entirely disjoint; or (b)
one is entirely contained within another.

y

12/13

z s

x w v

t

14/15

11/16

u

1/102/9

7/84/5

3/6

s

z

y

x

w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t

v u

(s (z (y (x x) y) (w w) z) s) (t (v (uv) u) t)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Properties of DFS: Parenthesis Theorem

• Proof: Consider two nodes and . W.l.o.g., assume u.d < v.d .

• If v.d < u.f , then is discovered (WHITE GRAY) while is being processed
(GRAY); and DFS will finish first, before returning to .

‣ In this case, [v.d, v.f] ⊂ [u.d, u.f], and is an ancestor of .

• If v.d > u.f, then obviously u.d < u.f < v.d < v.f ; and DFS has finished exploring
 (BLACK), before is discovered (WHITE GRAY).

‣ In this case, [u.d, u.f] and [v.d, v.f] are disjoint, and have no ancestor-
descendant relation.

u v

v → u
v u

u v

u v →

u, v

智能软件与⼯程学院
School of Intelligent Software and Engineering

Properties of DFS: White-path Theorem

• Proof of []

‣ Claim: If is a proper descendant of , then is WHITE when is discovered.

- Since if is a is a proper descendant of , then u.d < v.d.

‣ For any node along the path from to in the DFS forest, above claim holds.

‣ Therefore, [] direction of the theorem holds.

⟹

v u v u

v u

u v

⟹

u v1 v2 v……

WHITE GRAY→

Theorem In the DFS forest, is a descendant of iff when is discovered,
there is a path in the graph from to containing only WHITE nodes.

v u u
u v

智能软件与⼯程学院
School of Intelligent Software and Engineering

Depth-first search until all the edges of is explored!vk

Properties of DFS: White-path Theorem
• Proof of []:

‣ W.l.o.g., assume is the first node along the path that does not become a descendant
of .

‣ So we have [.d, .f] ⊂ [u.d, u.f].

‣ But is discovered after is discovered, and must before is finished.

‣ So we have u.d < v.d < .f u.f .

‣ Then it must be [v.d, v.f] ⊂ [u.d, u.f], implying is a descendant of .

⟸

v
u

vk vk

v u vk

vk ≤

v u

u v1 v2 v…… vk

智能软件与⼯程学院
School of Intelligent Software and Engineering

Properties of DFS: Classification of edges
• Determine type by color of during DFS execution.

‣ Tree Edges: Edges in the DFS forest.

‣ Back Edges: Edges connecting to an ancestor in a DFS tree.

‣ Forward Edges: Non-tree edges connecting to a descendant in
a DFS tree.

‣ Cross Edges: Other edges. (Connecting nodes in same DFS tree with no
ancestor-descendant relation, or connecting nodes in different DFS trees.)

(u, v) v

(u, v) u v

(u, v) u v

Node is WHITEv

Node is GRAYv

Node is BLACKv

Node is BLACKv

Tree Back Forward Cross

s u w

vt

TreeBack

Forward

Cross

s

t

u

v w

1 2 3 4 5 6 7 8 9 10

智能软件与⼯程学院
School of Intelligent Software and Engineering

Properties of DFS: Types of edges in undirected graphs

• Will all four types of edges appear in DFS of undirected graphs？

Theorem In DFS of an undirected graph , every edge of is either a
tree edge or a back edge.

G G

• Proof:

‣ Consider an arbitrary edge . W.l.o.g., assume u.d < v.d .

‣ Edge must be explored while is GRAY.

‣ Consider the first time the edge is explored.

(u, v)

(u, v) u

(u, v)

WHY?

智能软件与⼯程学院
School of Intelligent Software and Engineering

• Proof (continued):

‣ If the direction is . Then, must be WHITE by then, for otherwise
the edge would have been explored from direction earlier.

- In such case, the edge becomes a tree edge.

‣ If the direction is . Then, the edge is “GRAY GRAY”.

- In such case, the edge becomes a back edge.

u → v v
v → u

(u, v)

v → u →

(u, v)

Properties of DFS: Types of edges in undirected graphs

智能软件与⼯程学院
School of Intelligent Software and Engineering

DFS, BFS, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

Other queuing disciplines lead to more interesting algorithms!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.22 (22.1-22.3)

