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Graphs are Everywhere!
• Transportation Networks. 

‣ Nodes: Airports; Edges: Nonstop flights.

• Communication Networks. 

‣ Nodes: Computers; Edges: Physical links.


• Social Networks. 

‣ Nodes: People; Edges: Friendship.


• …
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Followed by many graph problems 

• Nodes: Countries; 
Edges: Neighboring 
countries.


• Question of Interest: 
Chromatic number?

• Nodes: Exams; 
Edges: Conflicts.


• Question of Interest: 
Chromatic number?

• Nodes: States ; 
Edges: Legit moves


• Question of Interest: 
Shortest path?

Coloring Maps Scheduling Exams Solving Sliding Puzzle

• Nodes: States ; 
Edges: Legit moves


• Question of Interest:    
God's Number?

Solving Rubik’s Cube

1 3
4 2 5
7 8 61 3

4 2 5
7 8 6

1 34
2 5

7 8 6

1 3
4

2
5

7 8 6

1 3
4 2 5
7 8 6

1 34
2 5
7 8 6

1 34
2 57
8 6

1 3
4

2
5

7 8
6

minimal number of turns?微积分

软⼯1

编译

离散

线代
算法

概率

操作系统组原

both taken by at least one student
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Representing graphs in computers
• Adjacency Matrix (邻接矩阵) 

‣ Consider a graph , where  and 


‣ The Adjacency Matrix of  is an  matrix  where


- 


‣ The matrix will be symmetry if  is undirected.


‣ The matrix will always cost  memory, regardless of .

G = (V, E) |V | = n |E | = m

G n × n A = (aij)

aij = {1 if (i, j) ∈ E
0 otherwise

G

Θ(n2) m

0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

1 2 3

54 6

0 1 0 1 0 0
0 0 0 0 1 0
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0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Quick Question: What does  mean, if anything?A2

1
2
3
4
5

1 2 3 4 5
1
2
3
4
5
6

1 2 3 4 5 6

1 2

3

45

Simple Graph 
without self loop
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Representing graphs in computers
• Adjacency List (邻接表) 

‣ Consider a graph , where  and 


‣ The Adjacency List of  is a collection of  lists:


- One for each vertex 


- In the list for , vertex  exists iff edge 


‣ Each edge appears twice if  is undirected.


‣ The space cost is 

G = (V, E) |V | = n |E | = m

G n

u ∈ V

u v (u, v) ∈ E

G

Θ(n + m)

1 2 3

54 6
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Adjacency Matrix and Adjacency List

• Fast Query: Are  and  neighbors?


• Slow Query: Find me any neighbor of .


• Slow Query: Enumerate all neighbors of .

u v

u

u

Adjacency Matrix

• Fast Query: Find me any neighbor of .


• Fast Query: Enumerate all neighbors of .


• Slow Query: Are  and  neighbors?

u

u

u v

Adjacency List

Queries: What types of queries are needed and/or frequent? 
Space usage: Is the graph dense or sparse? Important question to ask

Trade-offs
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Searching in a Graph (or, Graph Traversal)

• Goal: Start at source node  and find some node .


• Or: Visit all nodes reachable from .

s t

s

• Two Basic Strategies:


‣Breadth-First Search (BFS) 

‣Depth-First Search (DFS)

• Many applications, beside searching and traversal!


• Usually use adjacency list when discussing BFS/DFS. (At least in this course…)
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Breadth-First Search
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d = 2

d = 1

d = 0

Breadth-First Search (BFS)
E S A

D C B

S

A C D E

B

Visit all distance  nodes, 
before visit any distance 

 node.

d

d + 1

These nodes are neighbors of 
distance 1 nodes!

• Basic Idea of BFS:


‣ Start at the source node ;

‣ Visit other nodes (reachable from s) “layer by layer”.


• More precise description:


‣ Start at the source node ;


‣ Visit nodes at distance 1 from ;


‣ Visit nodes at distance 2 from ;


‣ …

s

s

s

s
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BFS Implementation
• How to implement BFS? (Hint: recall traversal-by-layer in trees)


‣ Use a FIFO Queue!

• Nodes have 3 status:


‣ Undiscovered (            ): Not in queue yet.


‣ Discovered but not visited (            ): In queue but not 
processed.


‣ Visited (             ): Ejected from queue and processed.BLACK

GRAY

WHITE

BFSSkeleton(G, s):
for  each u in V

u.dist := INF,  u.discovered := False  
s.dist := 0,  s.discovered := True
Q.enque(s)
while  !Q.empty()

 u := Q.dequeue()
 for each edge (u, v) in E

  if !v.discovered
v.dist := u.dist + 1
v.discovered := True
Q.enque(v)

We can “store” a shortest path, instead of only “computing” the length of the path —> by additionally recording the node’s parent info.
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BFS Implementation
BFS(G, s):
for  each u in V

 u.c := WHITE, u.d := INF,  u.p := NIL  
s.c := GRAY , s.d := 0,  s.p := NIL
Q.enque(s)
while  !Q.empty()

 u := Q.dequeue()
 u.c :=  BLACK
 for each edge (u, v) in E

  if v.c = WHITE
v.c := GRAY
v.d := u.d + 1
v.p := u
Q.enque(v)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Sample Execution
∞ 0 ∞
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Performance of BFS
• Runtime of BFS? (Assuming G is connected.)


• “While” loop  times.


‣ Each node in  at most once.


• “For” loop  times.


‣ Each edge visited at most once or twice.


• Runtime of BFS is .

Θ(n)

Q

Θ(m)

Θ(n + m)

What if we use adjacency matrix instead of adjacency list?

BFS(G, s):
for  each u in V

 u.c := WHITE, u.d := INF,  u.p := NIL  
s.c := GRAY , s.d := 0,  s.p := NIL
Q.enque(s)
while  !Q.empty()

 u := Q.dequeue()
 u.c := BLACK
 for each edge (u, v) in E

  if v.c = WHITE
v.c := GRAY
v.d := u.d + 1
v.p := u
Q.enque(v)
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Correctness and Properties of BFS

Proof: 

• [only if] If a node is not reachable from , then BFS does not visit it, since BFS only 
moves along edges.


• [if] If a node is reachable from , then BFS visits it.


‣ Claim: For all , all nodes within  hops of  are visited.


- [Basis]: Clearly  is visited.


- [Hypothesis]: All nodes within  hops of  are visited.

s

s

k ≥ 0 k s

s

k − 1 s

Theorem BFS visits a node iff it is reachable from .s
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Will this really happen?!

Correctness and Properties of BFS

- [Inductive Step]: Consider a node  that is  hops away from . Let  be 
’s neighbor on (one of) ’s shortest path back to 


By induction hypothesis,  gets visited.


When BFS visits , node  is already GRAY or BLACK, or will be put in .


Either way,  eventually gets visited.

v k s u
v v s

u

u v Q

v

Theorem BFS visits a node iff it is reachable from .s
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Correctness and Properties of BFS

• [Proof Idea] Use induction to show:


‣ For all , there is a moment at which:


- (a) every node  with dist(s, u)  correctly computes u.dist;


- (b) every other node  has v.dist = ;


- (c)  contains exactly the nodes  hops away from .

d ≥ 0

u ≤ d

v ∞

Q d s

Theorem BFS correctly computes u.dist, for every node  that is reachable from u s
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Correctness and Properties of BFS

•  is a breadth-first tree, which can print on a shortest path from any 
node  to the source node . Here:


‣ ,


‣ . 

Gp = (Vp, Ep)
v s

Vp = {u ∈ V : u . p ≠ NIL} ∪ {s}

Ep = {(u . p, u) : u ∈ Vp − {s}}

Theorem BFS correctly computes u.dist, for every node  that is reachable from u s

Corollary For any  that is reachable from , one of the shortest path from 
 to  is a shortest path from  to  followed by the edge 

u ≠ s s
s u s u . p (u . p, u)

1 0 2

12 2

3

3

r s t u

v w x y

0

s

1

r
1

w

2
v

2 2

33

t

u

x

y
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One last note on BFS
• What if the graph is not connected?


‣ Easy, do a BFS for each connected component!

BFS(G):
for  each u in V

 u.c := WHITE, u.d := INF,  u.p := NIL 
for  each u in V
if u.c = WHITE 

u.c := GRAY , u.d := 0,  u.p := NIL
Q.enque(u)
while  !Q.empty()

 v := Q.dequeue()
 v.c := BLACK
 for each edge (v, w) in E

  if w.c = WHITE
         w.c := GRAY
         w.d := v.d + 1
         w.p := w
         Q.enque(w)

Runtime of this procedure?
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Depth-First Search
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Depth-First Search (DFS)
• Much like exploring a maze:


‣ Use a ball of string and a piece of chalk.


‣ Follow path (unwind string and mark at 
intersections), until stuck (reach dead-end or 
already-visited place).


‣ Backtrack (rewind string), until find unexplored 
neighbor (intersection with unexplored direction). 


‣ Repeat above two steps.
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Depth-First Search (DFS)
• How to do this for a graph, in computer?


‣ Chalk: boolean variables.


‣ String: a stack.

DFSSkeleton(G, s):
s.visited := True
for each edge (s, v) in E
if  !v.visited

DFSSkelecton(G, v)

D A B

CH I

E

JFG

DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited
       u.visited := True
for each edge (u, v) in E

Q.push(v)
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DFSSkeleton(G, s):
s.visited := True
for each edge (s, v) in E
if  !v.visited

DFSSkelecton(G, v) 

DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited
       u.visited := True
for each edge (u, v) in E

Q.push(v)

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A
A B

D C

BCDA
A B

D C

CBCDA
A B

D C

CBCDA

A B

D C

BCDA
A B

D C

CDA
A B

D C

ADA
A B

D C

A B

D C

DA
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Depth-First Search (DFS)
• What if the graph is not (strongly) connected?


‣ Do DFS from multiple sources.
DFSAll(G):
for each node u in V

v.visited := False
for each node u in V

if  !u.visited
DFSSkelecton(G, u)

DFSSkeleton(G, s):
s.visited := True
for each edge (s, v) in E

if  !v.visited
DFSSkelecton(G, v)

DFSAll(G):
for each node u in V

v.visited := False
for each node u in V

if  !u.visited
DFSIterSkelecton(G, u)

DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited
       u.visited := True

for each edge (u, v) in E
Q.push(v)
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Depth-First Search (DFS)
• Each node  have 3 status during DFS:


‣ Undiscovered [             ]: before calling DFSSkeleton(G,u) 

‣ Discovered [             ]: during execution of DFSSkeleton(G,u) 

‣ Finished [              ]: DFSSkeleton(G,u)returned


• DFS(G,u) builds a tree among nodes reachable from :


‣ Root of this tree is .


‣ For each non-root, its parent is the node that makes it turn GRAY.


• DFS on entire graph builds a forest.

u

u

u

DFSAll(G):
for each node u in V

u.color :=  WHITE
u.parent := NIL

for each node u in V
if  u.color = WHITE

DFS(G, u) 

DFS(G, s):
s.color := GRAY
for each edge (s, v) in E
if  v.color = WHITE
       v.parent := s

DFS(G, v)
s.color := BLACK

BLACK

GRAY

WHITE
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F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E

F

A B

D C

E
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Depth-First Search (DFS)
• DFS provides (at least) two chances to process each node:


‣ Pre-Visit: WHITE  GRAY


‣ Post-Visit: GRAY  BLACK

→

→

DFSAll(G):

for each node u in V
u.color :=  WHITE
u.parent := NIL

for each node u in V
if  !u.visited

DFS(G, u) 

DFS(G, s):

s.color := GRAY
for each edge (s, v) in E

if  v.color = WHITE
       v.parent := s

DFS(G, v)
s.color := BLACK

PreProcess(G) PreVisit(s)

PostVisit(s)

• Sample application: Track active intervals of nodes


‣ Clock ticks whenever some node’s color changes.


‣ Discovery time: when the node turns to GRAY.


‣ Finish time: when the node turns to BLACK.

PreProcess(G):
time :=  0

PreVisit(s):
time :=  time + 1
s.d := time

PostProcess(G):
time :=  time + 1
s.f := time

Note: here it 
indicates the 

discovery time
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A B

D C

DFSAll(G):

for each node u in V
u.color :=  WHITE
u.parent := NIL

for each node u in V
if  !u.visited

DFS(G, u) 

PreProcess(G)

DFS(G, s):

s.color := GRAY
for each edge (s, v) in E

if  v.color = WHITE
       v.parent := s

DFS(G, v)
s.color := BLACK

PreVisit(s)

PostVisit(s)

PreProcess(G):
time :=  0

PreVisit(s):
time :=  time + 1
s.d := time

PostProcess(G):
time :=  time + 1
s.f := time

A B

D C

1,?

A B

D C

1,? 2,?

A B

D C

1,? 2,?

3,?

A B

D C

1,? 2,?

3,4

A B

D C

1,? 2,5

3,4

A B

D C

1,? 2,5

3,46,?

A B

D C

1,? 2,5

3,46,7

A B

D C

1,8 2,5

3,46,7
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Runtime of DFS
• Time spent on each node: 


‣ DFS(G,u) is called once for each node .


• Time spent on each edge: 


‣ Each edge is examined  times.

O(1)

u

O(1)

O(1)

DFSAll(G):

for each node u in V
u.color :=  WHITE
u.parent := NIL

for each node u in V
if  !u.visited

DFS(G, u) 

PreProcess(G)

DFS(G, s):

s.color := GRAY
for each edge (s, v) in E

if  v.color = WHITE
       v.parent := s

DFS(G, v)
s.color := BLACK

PreVisit(s)

PostVisit(s)

PreProcess(G):
time :=  0

PreVisit(s):
time :=  time + 1
s.d := time

PostProcess(G):
time :=  time + 1
s.f := time

Total runtime: O(n + m)
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Classification of edges
• DFS process classify edges of input graph into four types.


‣ Tree Edges: Edges in the DFS forest.


‣ Back Edges: Edges  connecting  to an ancestor  in a DFS tree.


‣ Forward Edges:  Non-tree edges  connecting  to a descendant  in a DFS tree.


‣ Cross Edges:  Other edges. (Connecting nodes in same DFS tree with no ancestor-
descendant relation, or connecting nodes in different DFS trees.)

(u, v) u v

(u, v) u v

s u w

vt

s u w

vt

TreeBack

Forward

Cross
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Properties of DFS: Parenthesis Theorem

• For any two nodes  and , exactly one of following holds:


‣ (a) [u.d, u.f ] and [v.d, v.f ] are disjoint, and  have no ancestor-descendant relation in 
the DFS forest;


‣ (b) [u.d, u.f ] ⊂ [v.d, v.f ], and  is a descendant of  in a DFS tree;


‣ (c) [v.d, v.f ] ⊂ [u.d, u.f ], and  is an ancestor of  in a DFS tree.

u v

u, v

u v

u v

Theorem: Active intervals of two nodes are either: (a) entirely disjoint; or (b) 
one is entirely contained within another.

y

12/13

z s

x w v

t

14/15

11/16

u

1/102/9

7/84/5

3/6

s

z

y

x

w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t

v u

(s (z (y (x x) y) (w w) z) s) (t (v (uv) u) t)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Properties of DFS: Parenthesis Theorem

• Proof: Consider two nodes  and . W.l.o.g., assume u.d < v.d .


• If v.d < u.f , then  is discovered (WHITE  GRAY) while  is being processed 
(GRAY); and DFS will finish  first, before returning to .


‣ In this case, [v.d, v.f ] ⊂ [u.d, u.f ], and  is an ancestor of .


• If v.d > u.f, then obviously u.d < u.f < v.d < v.f ; and DFS has finished exploring 
 (BLACK), before  is discovered (WHITE  GRAY).


‣ In this case, [u.d, u.f ] and [v.d, v.f ] are disjoint, and  have no ancestor-
descendant relation.

u v

v → u
v u

u v

u v →

u, v
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Properties of DFS: White-path Theorem

• Proof of  [ ]

‣ Claim: If  is a proper descendant of , then  is WHITE when  is discovered.


- Since if  is a is a proper descendant of , then u.d < v.d.


‣ For any node along the path from  to  in the DFS forest, above claim holds.


‣ Therefore, [ ] direction of the theorem holds.

⟹

v u v u

v u

u v

⟹

u v1 v2 v……

WHITE  GRAY→

Theorem In the DFS forest,  is a descendant of  iff when  is discovered, 
there is a path in the graph from  to  containing only WHITE nodes.

v u u
u v
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Depth-first search until all the edges of  is explored!vk

Properties of DFS: White-path Theorem
• Proof of  [ ]:


‣ W.l.o.g., assume  is the first node along the path that does not become a descendant 
of .


‣ So we have [ .d, .f ] ⊂ [u.d, u.f ].

‣ But  is discovered after  is discovered, and must before  is finished.


‣ So we have u.d < v.d < .f  u.f .

‣ Then it must be [v.d, v.f ] ⊂ [u.d, u.f ], implying  is a descendant of . 

⟸

v
u

vk vk

v u vk

vk ≤

v u

u v1 v2 v…… vk
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Properties of DFS: Classification of edges
• Determine  type by color of  during DFS execution.


‣ Tree Edges: Edges in the DFS forest.


‣ Back Edges: Edges  connecting  to an ancestor  in a DFS tree.


‣ Forward Edges:  Non-tree edges  connecting  to a descendant  in 
a DFS tree.


‣ Cross Edges:  Other edges. (Connecting nodes in same DFS tree with no 
ancestor-descendant relation, or connecting nodes in different DFS trees.)

(u, v) v

(u, v) u v

(u, v) u v

Node  is WHITEv

Node  is GRAYv

Node  is BLACKv

Node  is BLACKv

Tree Back Forward Cross

s u w

vt

TreeBack

Forward

Cross

s

t

u

v w

1 2 3 4 5 6 7 8 9 10
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Properties of DFS: Types of edges in undirected graphs 

• Will all four types of edges appear in DFS of undirected graphs？

Theorem In DFS of an undirected graph , every edge of  is either a 
tree edge or a back edge.

G G

• Proof: 

‣ Consider an arbitrary edge . W.l.o.g., assume u.d < v.d .

‣ Edge  must be explored while  is GRAY.


‣ Consider the first time the edge  is explored.

(u, v)

(u, v) u

(u, v)

WHY?



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

• Proof (continued):


‣ If the direction is . Then,  must be WHITE by then, for otherwise 
the edge would have been explored from direction  earlier.


- In such case, the edge  becomes a tree edge. 

‣ If the direction is . Then, the edge is “GRAY  GRAY”.


- In such case, the edge  becomes a back edge.

u → v v
v → u

(u, v)

v → u →

(u, v)

Properties of DFS: Types of edges in undirected graphs 
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DFS, BFS, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

Other queuing disciplines lead to more interesting algorithms!
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Further reading

• [CLRS] Ch.22 (22.1-22.3)


