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Transportation Networks.

> Nodes: Airports; Edges: Nonstop flights.
Communication Networks.

> Nodes: Computers; Edges: Physical links.
Social Networks.

> Nodes: People; Edges: Friendship.
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Followed by many graph problems

Coloring Maps Scheduling Exams Solving Sliding Puzzle Solving Rubik’s Cube

* Nodes: Cquntrleg; * Nodes: Exams; * Nodes: States; * Nodes: States;
Edges: Neighboring _ . _ . _ .
. Edges: Conflicts. Edges: Legit moves Edges: Legit moves
countries.
. Question of Interest: * Question of Interest: * Question of Interest: * Question of Interest:

Chromatic number? Chromatic number? Shortest path? God's Number?

minimal number of turns?

both taken by at least one student
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Representlng graphs in computers

 Adjacency Matrix (3B1ZEF%)

» Consideragraph G = (V,E), where |V| =nand |E| =m

» The Adjacency Matrix of G is an n X n matrix A = (a ) where

) alj:{l if (i,7) e &

0 otherwise
Quick Question: What does A? mean, if anything?

» The matrix will be symmetry if G is undirected.

o 1 2 3 45 6
» The matrix will always cost ®(n°) memory, regardless of m. : -
1 /01 0100
1 2345 e e e e
0 1 /0100 1 2 OOOO ________ 1.0
2 |1 0.1 11 3 |90 0 00T 1
3 01010 4010000
4 01101 5000100
5 |11.01 6 6 000 0 0 f
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Representing graphs in computers

 Adjacency List (4B31£3%)

» Consideragraph G = (V,E),where |V| =nand |E| =m
» The Adjacency List of G is a collection of 7 lists:

- One foreach vertexu € V

- In the list for u, vertex v exists iff edge (#,v) € E

» Each edge appears twice if G is undirected.

» The space cost is ®(n + m)

1 —2 —4 0

& P By e : 2 — 5 @
2| =1 —15 —m8 4@ 3 — 6 —5 O

3 —2 —4 @ s 2 0

4 —2 —5 —3 O 5 —14 O

5 —~4 —1 —2 © 6 — 6 O
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Adjacency Matrix and Adjacency List
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Queries: What types of queries are needed and/or frequent?

Adjacency Matrix

Adjacency List

 Fast Query: Are u and v neighbors?  Fast Query: Find me any neighbor of u.

 Slow Query: Find me any neighbor of u.  Fast Query:. Enumerate all neighbors of u.

 Slow Query: Enumerate all neighbors of . e Slow Query: Are u and v neighbors?

Space usage: Is the graph dense or sparse?
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Searchlng in a Graph (or, Graph Traversal)

e Goal: Start at source node s and find some node .
 Or: Visit all nodes reachable from s.

 Two Basic Strategies:
> Breadth-First Search (BFS)

> Depth-First Search (DFS)

 Many applications, beside searching and traversal!

* Usually use adjacency list when discussing BFS/DFS.
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Breadth-First Search
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Breadth-First Search (BFS)

e Basic Idea of BFS:

» Start at the source node s;

> Visit other nodes (reachable from s) “layer by layer”.
* More precise description:

» Start at the source node s;

> Visit nodes at distance 1 from s;

Visit all distance d nodes,

. : before visit any distance
> Visit nodes at distance 2 from s, 7+ 1 node.

These nodes are neighbors of
distance 1 nodes!
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BFS Implementation

* How to implement BFS? (Hint: recall traversal-by-layer in trees) BESSkeleton(G. s):

for eachuin V
> Use a FIFO Queue! u.dist .= INF, u.discovered := False
s.dist :==0, s.discovered := True
0 .enque(s)
while !0.empty()
u .= Q.dequeue()
for each edge (1, v) in E
if Ww.discovered
vdist .= u.dist + 1
vdiscovered = True

0 .enque(v)

e Nodes have 3 status:

» Undiscovered ((WHITE]): Not in queue yet.

- Discovered but not visited ({244 ): In queue but not
processed.

> Visited (): Ejected from queue and processed.

e can “store” a shortest path, instead of only “computing” the length of the path —> by additionally recording the node’s parent info.




BFS Implementation

BES(G. s):
for eachuin V
u.c .= WHITE, u.d .= INF, u.p .= NIL
S.C = ,5.d:=0, s.p:=NIL
0 .enque(s)
while !0.empty()
u .= Q.dequeue()

i =

for each edge (u, v) in E

if v.ic = WHITE
V.C =
vd =ud+ 1
V.p = U

0O .enque(v)



Sample Execution

r (c) rlit|x

1 () 1 2 2
A%

v|u viuly

2 3 3




Performance of BFS

BES(G. s):
for each uin V
u.c := WHITE, u.d .= INF, u.p := NIL

Runtime of BFS? (Assuming G is connected.)

“While” IOOp @(n) times. S.C = , s.d:=0, s.p:=NIL
0 .enque(s)
» Each node in O at most once. while !Q.empty()
u .= Q.dequeue()
“For” loop ®(m) times. R LACK
for each edge (u, v) in E
» Each edge visited at most once or twice. B
X (GRA
. . vd =ud+1
Runtime of BFS is O(n + m). N
O .enque(v)

What if we use adjacency matrix instead of adjacency list?
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Correctness and Properties of BFS

Theorem BFS visits a node iff it is reachable from s.

Proof:

o [only if] If a node is not reachable from s, then BFS does not visit it, since BFS only
moves along edges.

o [/f] If a node is reachable from s, then BFS visits it.
» Claim: For all kK > 0, all nodes within k hops of s are visited.
- [Basis]: Clearly s is visited.

- [Hypothesis]: All nodes within kK — 1 hops of s are visited.
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Correctness and Properties of BFS

Theorem BFS visits a node iff it is reachable from s.
- [Inductive Step]: Consider a node v that is kK hops away from s. Let u be
V’s neighbor on (one of) v’s shortest path back to s
By induction hypothesis, 1 gets visited.

When BFS visits 1, node v is already GRAY or BLACK, or will be put in Q.

Either way, v eventually gets visited. T~

Will this really happen?!



PV *“ﬁ $ 1 *z—?—lzm
$J School of Inte

Correctness and Properties of BFS

Theorem BFS correctly computes u.dist, for every node u that is reachable from s

e [Proof Idea] Use induction to show:

» Forall d > 0, there is a moment at which:
- (a) every node u with dist(s, u) < d correctly computes u.dist,
- (b) every other node v has v.dist = o0;

- (c) O contains exactly the nodes d hops away from s.
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Correctness and Properties of BFS

Theorem BFS correctly computes u.dist, for every node u that is reachable from s

Corollary For any u # s that is reachable from s, one of the shortest path from
s to u is a shortest path from s to u . p followed by the edge (u . p, u)

- G, = (Vp, Ep) is a breadth-first tree, which can print on a shortest path from any

node v to the source node s. Here:

r

- V,={ueV:u.p#NIL}U (s},

»Ep={(u.p,u):u€Vp—{s}}. ’




One last note on BFS

BES(G):
 What if the graph is not connected? for each uin V
u.c .= WHITE, u.d := INF, u.p := NIL
» Easy, do a BFS for each connected component! for each uin V
if u.c= WHITE
U.C ;= , ud:=0, up :=NIL
0 .enque(u)
while !Q.empty()
v := Q.dequeue()

Runtime of this procedure?

for each edge (v, w) in E

if we=WHITE
XN GRA
wd =vd+ 1
Wp :=w
0 .enque(w)




O&abthk T FO 4=
BEE TGS TP
School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Depth-First Searc
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Depth-First Search (DFS)

 Much like exploring a maze:

> Use a ball of string and a piece of chalk.

> Follow path (unwind string and mark at
iIntersections), until stuck (reach dead-end or
already-visited place).

» Backtrack (rewind string), until find unexplored
neighbor (intersection with unexplored direction).

> Repeat above two steps.
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Depth-First Search (DFS)

 How to do this for a graph, in computer?

» Chalk: boolean variables.

> String: a stack.

DESSkeleton(G, s):
s.visited = True
for each edge (s, v) in E
it lvvisited
DFSSkelecton(G, v)

DESIterSkeleton(G., s):
Stack O

O .push(s)

while !Q.empty()

u = Q.pop()
if 'u.visited

u.visited = True
for each edge (u, v) in E

O .push(v)
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DESSkeleton(G., s):
s.visited ;= True
for each edge (s, v) in E

it lvvisited
DFSSkelecton(G, v)

DFESIterSkeleton(G, s):
StackQ A BCD C CD _C[:
S E SRS B
while !Q.empty() \@ \@ é

u = Q.pop() @ @ @ @

it lu.visited

CD CD D
u.visited = True — - _'? ?
for each edge (1, v) in E l \é (g é l l \a
0 push(v) (o) > O O
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Depth-First Search (DFS)

 What if the graph is not (strongly) connected?

DFESAII(G):
> Do DFS from multiple sources. for each node u in V
DFSAII(QG): visited = False

for h node u i
for each node u in V each node u In V

vvisited .= False T lu.visited
for each node uin V DFSlterSkelecton(G, u)
if \u.visited DESIterSkeleton(G, s):
DFSSkelecton(G, u) Stack QO
DFESSkeleton(G, s): Q .push(s)
s.visited := True while 1Q.empty()
for each edge (s, v) in E u = Q.pop()
if lv.visited it lu.visited
DFSSkelecton(G, v) u.visited := True

for each edge (u, v) in E
O.push(v)
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Depth-First Search (DFS)

DFSAII(G):

for each node uin V
u.color .= WHITE
u.parent := NIL

for each node uin V

 Each node u have 3 status during DFS:

> Undiscovered [[WHlTE]]: before calling DFSSkeleton (G, u)

~ Discovered [ ]: during execution of DFSSkeleton (G, u) it u.color = WHITE
DFS(G, u)

> Finished []: DFSSkeleton (G, u) returned

DES(G, s):

s.color := GRAY

for each edge (s, v) in E
if v.color = WHITE

> For each non-root, its parent is the node that makes it turn GRAY. v.parent := s
DFS(G, v)

* DFS on entire graph builds a forest. s.color .= BLACK

e DFS (G, u) builds a tree among nodes reachable from u:

» Root of this tree Is 1.
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Depth-First Search (DFS)

» DFS provides (at least) two chances to process each node: : * Sample application: Track active intervals of nodes

> Pre-Visit: WHITE — GRAY » Clock ticks whenever some node’s color changes.

> Post-Visit: GRAY — BLACK » Discovery time: when the node turns to GRAY.

>  Finish time: when the node turns to BLACK.

DFSAII(G): DFS(G. s): PreProcess(G):

PreProcess(G) PreVisit(s) time = (
for each node uin V s.color .= GRAY | PreVisit(s):
u.color := WHITE for each edge (s, v) in E : L,
_ : time := time + 1
u.parent ;= NIL if v.color = WHITE E .
: : | . S.d :=time
for each node uin V v.parent ;= s ; .Ng.te.therfhlt
. Indicates tne o
it lu.visited DFS(G, v) :discovery time PostProcess(G):
DFS(G, u) s.color :== BLACK time := time + 1

PostVisit(s) s.f = time
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DFESAI(G): DFS(G. s): PreProcess(G):
PreProcess(G) PreVisit(s) fime = 0
for each node v in V s.color := GRAY Pre Visit(s):
u.color .= WHITE for each €dg€ (s,v)InE time ;= time + 1
u.parent := NIL if v.color = WHITE s.d :=time
I : [ .=
for each node u in V v.parent .= § PostProcess(G):
if lu.visited DFS(G, v) G e i 4 |
DFS(G, u) s.color := BLACK e = Hme

PostVisit(s) s.f:=time
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Runtime of DFS

» Time spent on each node: O(1)

» DFS (G, u) Is called once for each node u.

Total runtime: O(n + m)

» Time spent on each edge: O(1)

> Each edge is examined O(1) times.

DFESAI(G): DFS( G. S): PreProcess( G):

PreProcess(G) PreVisit(s) fime := 0

for each node u in V s.color := GRAY Pre Visit(s):
u.color .= WHITE for each edge (s,v)inE time ;= time + 1
u.parent := NIL if v.color = WHITE s.d ;= time

i : [ .=

for each node uin V v.parent .= § PostProcess(G):

it lu.visited DFS(G,v) e i 4 ]
DFS(G, u) s.color == BLACK e .= Hme

PostVisit(s) s.f:=time



- Classification of edges

 DFS process classify edges of input graph into four types.

> Tree Edges: Edges in the DFS forest.
> : Edges (u, v) connecting u to an ancestor v in a DFS tree.

> Forward Edges: Non-tree edges (u, v) connecting u to a descendant v in a DFS tree.

> Cross Edges: Other edges. (Connecting nodes in same DFS tree with no ancestor-
descendant relation, or connecting nodes in different DFS trees.)

AR

\ . Cross

Forward



. HEERHS T2 F b Tree Back Forward Cross

> £
(o) y , ,
& School of Intelligent Software and Engineerin
Qoo f ntelligent Softw gineering

A% w Uu 1% w Uu A% w Uu A% w
X y Z X y Z X y Z X y Z
Uu A% w Uu A% w u A% Uu A% w

oL




| mnes TRER
¢J  School of Mtelligent Software and Engineering

Properties of DFS: Parenthesis Theorem

Theorem: Active intervals of two nodes are either: (a) entirely disjoint; or (b)
one Is entirely contained within another.

* For any two nodes u and v, exactly one of following holds:

» (@) [u.d, uf]and|vd, vf] are disjoint, and u, v have no ancestor-descendant relation in
the DFS forest;

> (b) [ud, uf]Clvd,vf], and u is a descendant of v in a DFS tree;

> (¢) [vd, v.f] Clu.d, uf], and u is an ancestor of v in a DFS tree.

3 5 5 10 11 12 13 4 15 16
(S (Z (}7 (X X) y) (W W) Z) S) (t (V V) (I/t I/t) t)
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Properties of DFS: Parenthesis Theorem

» Proof: Consider two nodes u# and v. W.l.o.g., assume u.d < v.d .

e Ifv.d <u.f,thenvis discovered (WHITE — GRAY) while u is being processed
(GRAY); and DFS will finish v first, before returning to u.

> In this case, |v.d, v.f | Clu.d, u.f ], and u is an ancestor of v.

* If v.d > u.f, then obviously u.d < u.f < v.d < v.f; and DFS has finished exploring
u (BLACK), before v is discovered (WHITE — GRAY).

> In this case, |u.d, u.f | and [v.d, v.f | are disjoint, and u, v have no ancestor-
descendant relation.
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Properties of DFS: White-path Theorem

Theorem In the DFS forest, v is a descendant of i iff when u is discovered,
there is a path in the graph from u to v containing only WHITE nodes.

e Proof of [—]
> Claim: If v is a proper descendant of i, then v is WHITE when u is discovered.
- Since if v is a is a proper descendant of u, then u.d < v.d.
> For any node along the path from u to v in the DFS forest, above claim holds.

> Therefore, [—>] direction of the theorem holds.

WHITE — GRAY
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Properties of DFS: White-path Theorem

* Proof of [<=]:

> W.l.o.g., assume Vv is the first node along the path that does not become a descendant
of u.

» So we have [de’ ka] C [u.d, uf] . Depth-first search until all the edges of v, is explored!
> But v is discovered after u is discovered, and must before v, is finished.

> Sowe haveud <vd<v,.f<uf.

» Then it must be [v.d, v.f | C lu.d, u.f ], implying v is a descendant of u.
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Properties of DFS: Classification of edges

» Determine (u, v) type by color of v during DFS execution.

> Tree Edges: Edges in the DFS forest. [ Node v is WHITE ]

- Back Edges: Edges (i, v) connecting i to an ancestor v in a DFS tree. [ \ib s

> Forward Edges: Non-tree edges (1, v) connecting u to a descendant v in
a DFS tree.

> Cross Edges: Other edges. (Connecting nodes in same DFS tree with no
ancestor-descendant relation, or connecting nodes in different DFS trees.)

Back Tree
e

. Forward ~Cross

Forward ]
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E’roperties of DFS: Types of edges in undirected graphs

 Will all four types of edges appear in DFS of undirected graphs?

Theorem In DFS of an undirected graph G, every edge of G is either a
tree edge or a back edge.

* Proof:

» Consider an arbitrary edge (u#,v). W.l.o.g., assume u.d < v.d .

» Edge (i, v) must be explored while u is GRAY. ¢

» Consider the first time the edge (u, v) is explored.
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* Proof (continued):

> |f the direction is u — v. Then, v must be WHITE by then, for otherwise
the edge would have been explored from direction v — u eatrlier.

- In such case, the edge (u#, v) becomes a tree edge.

> |f the direction is v — u. Then, the edge is “GRAY — GRAY”.

- In such case, the edge (u, v) becomes a back edge.



DFS, BFS, and others...

DESIterSkeleton(G, s): BESSkeletonAlt(G, s): GraphExploreSkeleton(G, s):
Stack O FIFOQueue O GenericQueue QO
O .push(s) 0 .enque(s) O .add(s)
while 'Q.empty() while 10.empty() while 'Q.empty()
u .= Q.pop() u .= Q.dequeue() u .= Q.remove()
it lu.visited it lu.visited it lu.visited
u.visited := True u.visited := True u.visited := True
for each edge (1, v) in E for each edge (1, v) in E for each edge (1, v) in E
O .push(v) 0O .enque(v) Q.add(v)

Other queuing disciplines lead to more interesting algorithms!




Further reading

+ [CLRS] Ch.22 (22.1-22.3)

INTRODUCTION TO

ALGCORITHMS




