
智能软件与工程学院
School of Intelligent Software and Engineering

最小生成树
Minimum Spanning Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

Minimum Spanning Trees (MST)
• Consider a connected, undirected, weighted graph .

• That is, we have a graph together with a weight function that assigns a real
weight to each edge .

• A spanning tree is a tree containing all nodes in and a subset of all the edges .

• A minimum spanning tree (MST) is a spanning tree whose total weight is

minimized.

G

G = (V, E) w : E → ℝ
w(u, v) (u, v) ∈ E

V T E

w(T) = ∑
(u,v)∈T

w(u, v)

A

B C

D

E F

G

8 5
10

2 3

3012 1618

14
4 26

A

B C

D

E F

G

8 5
10

2 3

3012 1618

14
4 26

A

B C

D

E F

G

8 5
10

2 3

3012 1618

14
4 26

智能软件与工程学院
School of Intelligent Software and Engineering

Application of MST
• Network Design:

‣ E.g., build a minimum cost network connecting all nodes.

- Transportation networks.

- Water supply networks.

- Telecommunication networks.

- Computer networks.

• Many other applications…

‣ E.g., important subroutine in more advanced algorithms.

- One such application is used in a classical approximation algorithm for solving TSP.

智能软件与工程学院
School of Intelligent Software and Engineering

Computing MST
• Consider the following generic method:

‣ Starting with all nodes and an empty set of edges .

‣ Find some edge to add to , maintaining the loop invariant that “ is a subset of
some MST”. (At anytime, is the edge set of a spanning forest.)

‣ Repeat above step until we have a spanning tree. (The resulting spanning tree
must be a MST.)

A

A A
A

GenericMST(G,w):
A :=
while A is not a spanning tree

 (u,v) := find_a_edge_maintaining_the_loop_invariant()
 A := A {(u, v)}

return A

∅

∪

Easy to determine, e.g., |A | = n − 1

These edges are called “safe edges”, how to identify them?

智能软件与工程学院
School of Intelligent Software and Engineering

Identifying Safe Edges
• A cut of is a partition of into

two parts.

• An edge crosses the cut if one of its
endpoint is in and the other endpoint is in .

• A cut respects an edge set if no edge in crosses
the cut.

• An edge is a light edge crossing a cut if the edge has
minimum weight among all edges crossing the cut.

(S, V − S) G = (V, E) V

(S, V − S)
S V − S

A A

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

S

V − S

Edge crosses

Light Edge

Cut () respectsS, V − S

智能软件与工程学院
School of Intelligent Software and Engineering

Identifying Safe Edges

• Proof:

‣ Let be an MST containing , assume does not include .

‣ Connecting forms a cycle in , and in that cycle some edge
other than crosses the cut. Let be that edge.

‣ must be a spanning tree.

‣ Since is a light edge crossing the cut, must be an MST,
and is safe for in .

T A T (u, v)

(u, v) T
(u, v) (x, y) ∈ T

T′￼ = T − (x, y) + (u, v)

(u, v) T′￼

(u, v) A T′￼

Theorem [Cut Property] Assume is included in the edge set of some MST, let
be any cut respecting . If is a light edge crossing the cut, then is safe for .

A (S, V − S)
A (u, v) (u, v) A

Su x

v yV − S

A

T

智能软件与工程学院
School of Intelligent Software and Engineering

Computing MST
Theorem [Cut Property] Assume is included in the edge set of some MST, let
be any cut respecting . If is a light edge crossing the cut, then is safe for .

A (S, V − S)
A (u, v) (u, v) A

Corollary Assume is included in some MST, let . Then for any connected
component in , its minimum-weight-outgoing-edge (MWOE) in is safe for .

A GA = (V, A)
GA G A

GenericMST(G,w):
A :=
while A is not a spanning tree

 (u,v) := find_a_safe_edge()
 A := A {(u, v)}

return A

∅

∪

In , an edge in a CC is “outgoing” if it connects to another CCGA

智能软件与工程学院
School of Intelligent Software and Engineering

Kruskal’s Algorithm
• Cut property: Assume is included in some MST, let

. Then for any connected component in ,
its MWOE in is safe for .

• Strategy for finding safe edge in Kruskal’s algorithm: Find
minimum weight edge connecting two CC in .

A
GA = (V, A) GA

G A

GA

KruskalMST(G,w):
A :=
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if adding edge (u,v) does not form cycle in A

 A := A {(u, v)}
return A

∅

∪

• Put another way:

‣ Start with CC (each node itself is a CC)
and .

‣ Find minimum weight edge connecting two
CC. (# of CC reduced by 1.)

‣ Repeat until one CC remains.

n
A = ∅

Joseph Kruskal

智能软件与工程学院
School of Intelligent Software and Engineering

Kruskal’s Algorithm
• Eden weights in increasing order: 2 3 4 5 8 10 12 14 16 18 26 30

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

智能软件与工程学院
School of Intelligent Software and Engineering

Kruskal’s Algorithm

• How to determine an edge forms a cycle?

‣ Put another way, how to determine if the
edge is connecting two CC?

KruskalMST(G,w):
A :=
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if adding edge (u,v) does not form cycle in A

 A := A {(u, v)}
return A

∅

∪

Use disjoint-set data structure！
Each set is a CC, and in same CC if:

Find(u) = Find(v).
u v

智能软件与工程学院
School of Intelligent Software and Engineering

Kruskal’s Algorithm

• Runtime of Kruskal’s algorithm?

‣ when using disjoint-set data structureO(m log n)

KruskalMST(G,w):
A :=
Sort edges into weight increasing order
for each node u in V

MakeSet(u)
for each edge (u,v) taken in weight increasing order
if Find(u) != Find(v)

 A := A {(u, v)}
Union(u, v)

return A

∅

∪

 O(m log m) = O(m log n)

 O(n)

 O(m log* n)

m ≤ n2

智能软件与工程学院
School of Intelligent Software and Engineering

Prim’s Algorithm
• Strategy for finding safe edge in Prim’s algorithm: Keep finding MWOE in one fixed CC in .GA

PrimMST(G,w):
A :=

 := {x}
while is not a spanning tree

 Find MWOE (u, v) of
 A := A {(u, v)}
 := {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪

• Put another way:

‣ Start with CC (each node itself is a CC) and . Pick a node x.

‣ Find MWOE of the component containing x (# of CC reduced by 1.)

‣ Repeat until one CC remains.

n A = ∅

Vojtěch Jarník Robert C. Prim Edsger W. Dijkstra

智能软件与工程学院
School of Intelligent Software and Engineering

Prim’s Algorithm
A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

智能软件与工程学院
School of Intelligent Software and Engineering

Prim’s Algorithm

• How to find MWOE efficiently?

• Put another way: how to find the next
node that is closest to ?

‣ Use a priority queue to maintain each
remaining node’s distance to .

Cx

Cx

PrimMST(G,w):
A :=

 := {x}
while is not a spanning tree

 Find MWOE (u, v) of
 A := A {(u, v)}
 := {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪

智能软件与工程学院
School of Intelligent Software and Engineering

Prim’s Algorithm
PrimMST(G,w):
x := Pick an arbitrary node in G
for each node u in V

 u.dist := INF, u.parent := NIL, u.in := False
x.dist := 0
PriorityQueue Q := Build a priority queue based on “dist” values
while Q is not empty

 u := Q.ExtractMin()
 u.in := True
 for each edge (u,v) in E

 if v.in = False and w(u,v) < v.dist
 v.parent := u, v.dist := w(u,v)
 Q.Update(v, w(u,v))

O(n)

O(n)

O(n lg n)

O(m lg n)

 using binary heap to implement priority queueO(m lg n)

Could be faster using better priority queue implementation （By using fibonacci heaps instead)

智能软件与工程学院
School of Intelligent Software and Engineering

DFS, BFS, Prim, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

PrimMSTSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)

智能软件与工程学院
School of Intelligent Software and Engineering

Borůvka’s Algorithm
• Borůvka’s algorithm for computing MST (actually the earliest MST

algorithm):

‣ Starting with all nodes and an empty set of edges .

‣ Find MWOE for every remaining CC in , add all of them to .

‣ Repeat above step until we have a spanning tree.

A

GA A

Otakar Borůvka
A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

智能软件与工程学院
School of Intelligent Software and Engineering

Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
16

14

4 26

18

A

B C

D

E F

G

8 5
10

2 3

3012
16

14

4 26

18

A

B C

D

E F

G

8 5
10

2 3

3012
16

14

4 26

18

智能软件与工程学院
School of Intelligent Software and Engineering

Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?

• But it may result in circles?

‣ Assuming all edge weights are distinct, if CC propose MWOE to
connect to , and proposes MWOE to connect to , then .

C1 e1
C2 C2 e2 C1 e1 = e2

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

G

8 5
10

2 3

3012
1618

14

4 26

智能软件与工程学院
School of Intelligent Software and Engineering

Borůvka’s Algorithm
KruskalMST(G,w):
G′ := (V,)
do
 ccCount := CountCCAndLabel(G′) //Do DFS/BFS, count #of CC, give ccNum to nodes.
 for i := 1 to ccCount

 safeEdge[i] := NIL
 for each edge (u,v) in E(G)

 if u.ccNum != v.ccNum
 if safeEdge[u.ccNum] = NIL or w(u,v) < w(safeEdge[u.ccNum])

 safeEdge[u.ccNum] := (u,v)
 if safeEdge[v.ccNum] = NIL or w(u,v) < w(safeEdge[v.ccNum])

 safeEdge[v.ccNum] := (u,v)
 for i := 1 to ccCount

 Add safeEdge[i] to E(G′)
while ccCount > 1
return E(G′)

∅

O(n)

O(n)

O(m + n) = O(m)

O(n)

 interactionsO(lg n)

Total runtime is O(m lg n)
belong to the ccNumth CC

WHY?

智能软件与工程学院
School of Intelligent Software and Engineering

Borůvka’s Algorithm

• Why Borůvka’s algorithm is interesting?

‣ The number of components in can drop by significantly more than a
factor of 2 in a single iteration, reducing the number of iterations below
the worst-case .

‣ Borůvka’s algorithm allows for parallelism naturally; while the other two
are intrinsically sequential.

‣ Generalizations of Borůvka’s algorithm lead to faster algorithms.

G′￼

O(lg n)

智能软件与工程学院
School of Intelligent Software and Engineering

Summary
• The “Cut Property” leads to many MST algorithms: Assume is included in some

MST, let be any cut respecting . If is a light edge crossing the
cut, then is safe for .

• Classical algorithms for MST, all with runtime :

‣ Kruskal (UnionFind): keep connecting two CC with min-weight edge.

‣ Prim (PriorityQueue): grow single CC by adding MWOE.

‣ Borůvka: add MWOE for all CC in parallel in each iteration.

• Can we do MST in time?

‣ Randomized algorithm with expected runtime exists.

A
(S, V − S) A (u, v)
(u, v) A

O(m ⋅ log n)

O(m)

O(m)

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.23

• [Erickson] Ch.7

