
智能软件与工程学院 
School of Intelligent Software and Engineering 

最小生成树 
Minimum Spanning Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛 
Nanjing University  

2024 Fall



智能软件与工程学院 
School of Intelligent Software and Engineering 

Minimum Spanning Trees (MST)
• Consider a connected, undirected, weighted graph .


• That is, we have a graph  together with a weight function  that assigns a real 
weight  to each edge .


• A spanning tree is a tree containing all nodes in  and a subset  of all the edges .


• A minimum spanning tree (MST) is a spanning tree whose total weight  is 

minimized.

G

G = (V, E) w : E → ℝ
w(u, v) (u, v) ∈ E

V T E

w(T) = ∑
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Application of MST
• Network Design:


‣ E.g., build a minimum cost network connecting all nodes.


- Transportation networks.


- Water supply networks.


- Telecommunication networks.


- Computer networks.


• Many other applications…


‣ E.g., important subroutine in more advanced algorithms. 


- One such application is used in a classical approximation algorithm for solving TSP.
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Computing MST
• Consider the following generic method:


‣ Starting with all nodes and an empty set of edges .


‣ Find some edge to add to , maintaining the loop invariant that “  is a subset of 
some MST”. (At anytime,  is the edge set of a spanning forest.)


‣ Repeat above step until we have a spanning tree. (The resulting spanning tree 
must be a MST.)

A

A A
A

GenericMST(G,w):
A := 
while  A is not a spanning tree

  (u,v) := find_a_edge_maintaining_the_loop_invariant()
  A := A  {(u, v)}

return A

∅

∪

Easy to determine, e.g., |A | = n − 1

These edges are called “safe edges”, how to identify them?
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Identifying Safe Edges
• A cut  of  is a partition of  into 

two parts.


• An edge crosses the cut  if one of its 
endpoint is in  and the other endpoint is in .


• A cut respects an edge set  if no edge in  crosses 
the cut.


• An edge is a light edge crossing a cut if the edge has 
minimum weight among all edges crossing the cut.
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Identifying Safe Edges

• Proof:


‣ Let  be an MST containing , assume  does not include .


‣ Connecting  forms a cycle in , and in that cycle some edge 
other than  crosses the cut. Let  be that edge.


‣  must be a spanning tree.


‣ Since  is a light edge crossing the cut,  must be an MST, 
and  is safe for  in .

T A T (u, v)

(u, v) T
(u, v) (x, y) ∈ T

T′￼ = T − (x, y) + (u, v)

(u, v) T′￼

(u, v) A T′￼

Theorem [Cut Property]  Assume  is included in the edge set of some MST, let  
be any cut respecting . If  is a light edge crossing the cut, then  is safe for .

A (S, V − S)
A (u, v) (u, v) A

Su x

v yV − S

A

T
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Computing MST
Theorem [Cut Property]  Assume  is included in the edge set of some MST, let  
be any cut respecting . If  is a light edge crossing the cut, then  is safe for .

A (S, V − S)
A (u, v) (u, v) A

Corollary Assume  is included in some MST, let . Then for any connected 
component in , its minimum-weight-outgoing-edge (MWOE) in  is safe for .

A GA = (V, A)
GA G A

GenericMST(G,w):
A := 
while  A is not a spanning tree

  (u,v) := find_a_safe_edge()
  A := A  {(u, v)}

return A

∅

∪

In , an edge in a CC is “outgoing” if it connects to another CCGA
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Kruskal’s Algorithm
• Cut property: Assume  is included in some MST, let 

. Then for any connected component in , 
its MWOE in  is safe for .


• Strategy for finding safe edge in Kruskal’s algorithm: Find 
minimum weight edge connecting two CC in .

A
GA = (V, A) GA

G A

GA

KruskalMST(G,w):
A := 
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if  adding edge (u,v) does not form cycle in A

  A := A  {(u, v)}
return A

∅

∪

• Put another way:


‣ Start with  CC (each node itself is a CC) 
and .


‣ Find minimum weight edge connecting two 
CC. (# of CC reduced by 1.)


‣ Repeat until one CC remains.

n
A = ∅

Joseph Kruskal
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Kruskal’s Algorithm
• Eden weights in increasing order:   2 3 4 5 8 10 12 14 16 18 26 30
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Kruskal’s Algorithm

• How to determine an edge forms a cycle? 


‣ Put another way, how to determine if the 
edge is connecting two CC?

KruskalMST(G,w):
A := 
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if  adding edge (u,v) does not form cycle in A

  A := A  {(u, v)}
return A

∅

∪

Use disjoint-set data structure！ 
Each set is a CC,  and  in same CC if: 

Find(u) = Find(v).
u v
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Kruskal’s Algorithm

• Runtime of Kruskal’s algorithm?


‣  when using disjoint-set data structureO(m log n)

KruskalMST(G,w):
A := 
Sort edges into weight increasing order
for  each node u in V

MakeSet(u)
for each edge (u,v) taken in weight increasing order
if  Find(u) != Find(v)

  A := A  {(u, v)}
Union(u, v)

return A

∅

∪

 O(m log m) = O(m log n)

 O(n)

 O(m log* n)

m ≤ n2
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Prim’s Algorithm
• Strategy for finding safe edge in Prim’s algorithm: Keep finding MWOE in one fixed CC in .GA

PrimMST(G,w):
A := 

 := {x}
while   is not a spanning tree

  Find MWOE (u, v) of 
  A := A  {(u, v)}
   :=   {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪

• Put another way:


‣ Start with  CC (each node itself is a CC) and . Pick a node x.


‣ Find MWOE of the component containing x (# of CC reduced by 1.)


‣ Repeat until one CC remains.

n A = ∅

Vojtěch Jarník Robert C. Prim Edsger W. Dijkstra
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Prim’s Algorithm
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Prim’s Algorithm

• How to find MWOE efficiently?


• Put another way: how to find the next 
node that is closest to ?


‣ Use a priority queue to maintain each 
remaining node’s distance to .

Cx

Cx

PrimMST(G,w):
A := 

 := {x}
while   is not a spanning tree

  Find MWOE (u, v) of 
  A := A  {(u, v)}
   :=   {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪
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Prim’s Algorithm
PrimMST(G,w):
x := Pick an arbitrary node in G
for each node u in V

  u.dist := INF,  u.parent := NIL,  u.in := False
x.dist := 0
PriorityQueue Q := Build a priority queue based on “dist” values
while  Q is not empty

  u := Q.ExtractMin()
  u.in := True
  for  each edge (u,v) in E

    if  v.in = False and w(u,v) < v.dist
      v.parent := u, v.dist := w(u,v)
      Q.Update(v, w(u,v))

O(n)

O(n)

O(n lg n)

O(m lg n)

 using binary heap to implement priority queueO(m lg n)

Could be faster using better priority queue implementation （By using fibonacci heaps instead)
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DFS, BFS, Prim, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

PrimMSTSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)
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Borůvka’s Algorithm
• Borůvka’s algorithm for computing MST (actually the earliest MST 

algorithm):

‣ Starting with all nodes and an empty set of edges .


‣ Find MWOE for every remaining CC in , add all of them to .


‣ Repeat above step until we have a spanning tree.

A

GA A

Otakar Borůvka
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Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?
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Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?


• But it may result in circles?


‣ Assuming all edge weights are distinct, if CC  propose MWOE  to 
connect to , and  proposes MWOE  to connect to , then .

C1 e1
C2 C2 e2 C1 e1 = e2
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Borůvka’s Algorithm
KruskalMST(G,w):
G′ := (V, )
do 
  ccCount := CountCCAndLabel(G′)                 //Do DFS/BFS, count #of CC, give ccNum to nodes.
  for i := 1 to ccCount

    safeEdge[i] := NIL
  for  each edge (u,v) in E(G)

    if  u.ccNum != v.ccNum
      if  safeEdge[u.ccNum] = NIL or w(u,v) < w(safeEdge[u.ccNum])

        safeEdge[u.ccNum] := (u,v)
      if  safeEdge[v.ccNum] = NIL or w(u,v) < w(safeEdge[v.ccNum])

        safeEdge[v.ccNum] := (u,v)
  for i := 1 to ccCount

    Add safeEdge[i] to E(G′)
while  ccCount > 1
return E(G′)

∅

O(n)

O(n)

O(m + n) = O(m)

O(n)

 interactionsO(lg n)

Total runtime is O(m lg n)
belong to the ccNumth  CC

WHY?
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Borůvka’s Algorithm

• Why Borůvka’s algorithm is interesting?


‣ The number of components in  can drop by significantly more than a 
factor of 2 in a single iteration, reducing the number of iterations below 
the worst-case .


‣ Borůvka’s algorithm allows for parallelism naturally; while the other two 
are intrinsically sequential.


‣ Generalizations of Borůvka’s algorithm lead to faster algorithms.

G′￼

O(lg n)
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Summary
• The “Cut Property” leads to many MST algorithms: Assume  is included in some 

MST, let  be any cut respecting . If  is a light edge crossing the 
cut, then  is safe for .


• Classical algorithms for MST, all with runtime :


‣ Kruskal (UnionFind): keep connecting two CC with min-weight edge. 


‣ Prim (PriorityQueue): grow single CC by adding MWOE.


‣ Borůvka: add MWOE for all CC in parallel in each iteration.


• Can we do MST in  time?


‣ Randomized algorithm with expected  runtime exists.

A
(S, V − S) A (u, v)
(u, v) A

O(m ⋅ log n)

O(m)

O(m)
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Further reading
• [CLRS] Ch.23


• [Erickson] Ch.7


