HeemSs IREF xR
School of Clnte[ﬁ’gent Soﬁ"ware and Engineering

HEZF
Nanjing University
2024 Fall

&
/l he slides are main[y ac{aptec{ f;zom the o’zigina[ones shared by Chaodong ZAeng and Kevin ra WY

ﬂ‘:
%‘g " -

s b SO

- .
A < - - - M - : » - . -
. - > L' - - o D . - .
. 4 - “ah . : 2 . ‘_l - :
N N -) 2 - ‘ -
Y | A -~ » Y 3 -) -
- - - > “a (- - <
- » . ' LA LN . B o= N - » .
' - .
s st L
<Y - ’ 3 { - .
- . -
-ty - - .
et " X . g .
’ ° wie
. e . nf [

'_'-';. é""'.‘_,

Nl

. ‘
/

| BEERIFS TiEFbx
of

=
43? School an(ﬁ'gent Soﬁ'ware and fngineering

Minimum Spanning Trees (MST)

 Consider a connected, undirected, weighted graph G.

» That is, we have a graph G = (V, E) together with a weight function w : E — R that assigns a real
weight w(u, v) to each edge (i, v) € E.

A spanning tree is a tree containing all nodes in V and a subset T of all the edges E.

* A minimum spanning tree (MST) is a spanning tree whose total weight w(7T’) = Z w(u, v) is
(u,v)eTl
minimized.

3
o0&tk T F3 4 e
| BEERHS ITEZEM
4435 School of Qnt@[ﬁgent Sofrware and Engineering

Application of MST

* Network Design:
> E.g., build a minimum cost network connecting all nodes.
- Transportation networks.
- Water supply networks.
- Telecommunication networks.
- Computer networks.
 Many other applications...
> E.g., Important subroutine in more advanced algorithms.

- One such application is used in a classical approximation algorithm for solving TSP.

Computing MST

* Consider the following generic method:

» Starting with all nodes and an empty set of edges A.

— — —
— —
— — — -
— —
— —
— —
— —
—
—
—
—

— —
—
- —
—
—

some MST”. (At anytime, A is the edge set of a spanning forest.)

> Repeat above step until we have a spanning tree. (The resulting spanning tree
must be a MST.) R

GenericMST(G,w):
A=
while A is not a spanning tree

________ Easy to determine, e.g., |A| =n —1

(u,v) := find_a_edge_maintaining_the_loop_invariant()
A=AU{(u, v}
return A

ldentifying Safe Edges

e Acut(S,V—235)of G =(V,FE)is a partition of Vinto
two parts.

* An edge crosses the cut (5, V —) if one of its
endpoint is in § and the other endpointisin V — .

* A cut respects an edge set A if no edge in A crosses
the cut.

* An edge is a light edge crossing a cut if the edge has Edge crosses
minimum weight among all edges crossing the cut. Light Edge

Cut (S, V — S) respects

ldentifying Safe Edges

Theorem [Cut Property] Assume A is included in the edge set of some MST, let (5, V —)
be any cut respecting A. If (1, v) is a light edge crossing the cut, then (i, v) is safe for A.

 Proof:

> Let T'be an MST containing A, assume T does not include (u, v).

» Connecting (u#, v) forms a cycle in T, and in that cycle some edge
other than (u, v) crosses the cut. Let (x, y) € T be that edge.

» T"=T - (x,y) + (u,v) must be a spanning tree.

> Since (u, v) is a light edge crossing the cut, 7" must be an MST,
and (u,v) is safe for A in 1. T

Computing MST

Theorem [Cut Property] Assume A is included in the edge set of some MST, let (5, V —)
be any cut respecting A. If («, v) is a light edge crossing the cut, then (i, v) is safe for A.

GenericMST(G,w):

A=0

while A is not a spanning tree
(u,v) .= find_a_safe_edge()
A=AU{(u,v)}

return A

Corollary Assume A is included in some MST, let G, = (V, A). Then for any connected
component in G,, its minimum-weight-outgoing-edge (MWOE) in G is safe for A.

N\

In G4, an edge in a CC is “outgoing” if it connects to another CC

» Cut property: Assume A is included in some MST, let
G, = (V,A). Then for any connected component in G,
its MWOE in G is safe for A.

o Strategy for finding safe edge in Kruskal’s algorithm: Find
minimum weight edge connecting two CC in G .

Joseph Kruskal

KruskalMST(G.w): e Put another way:
A=

Sort edges into weight increasing order

» Start with n CC (each node itself is a CC)
and A = .

for each edge (u,v) taken in weight increasing order

if adding edge (u,v) does not form cycle in A g (F:igd (minfirglém V(\j/eigh(’; ebd91e)00nn90tin9 two
.(#o0 reduced by 1.
A:=AU{(u,)}

return A > Repeat until one CC remains.

Kruskal’s Algorithm

* Eden weights in increasing order: 2345810121416 182630

Kruskal’s Algorithm

KruskalMST(G.w):
A=
Sort edges into weight increasing order

for each edge (u,v) taken in weight increasing order
if adding edge (u,v) does not form cycle in A
A=AU{(u,v)}
return A

« How to determine an edge forms a cycle?

> Put another way, how to determine if the
edge is connecting two CC?

Use disjoint-set data structure!

Each set is a CC, 1 and v in same CC |if:
Eand (1) = Pincd ().

Kruskal’s Algorithm
K?ilsé(alMST(G,w):

Sort edges into weight increasing order O(mlogm) = O(mlog n)
for each node uinV O
MakeSet(u) "

for each edge (u,v) taken in weight increasing order
if Find(u) != Find(v)
A=AU{(u,v)}
Union(u, v)
return A

O(mlog* n)

 Runtime of Kruskal’s algorithm?

» ((mlog n) when using disjoint-set data structure

Prim’s Algorithm

» Strategy for finding safe edge in Prim’s algorithm: Keep finding MWOE in one fixed CC in G,.

PrimMST(G,w):

A=0

C,:={x}

while C. is not a spanning tree
Find MWOE (u, v) of C,
A=AU{(u,v)}
C.:=C.U{v}

return A

\ .."

. .
'(’c... v .
\) . .
8 i "
.
{f X i
\ By ;
| 2
|
' |
& |
J g y
. 5 |

Vojtéch Jarnik Robert C. Prim Edsger W. Dijkstra

 Put another way:

» Start with n CC (each node itself is a CC) and A = @. Pick a node x.

> Find MWOE of the component containing x (# of CC reduced by 1.)

» Repeat until one CC remains.

O&abthk T FO 4=
BEE S Ti=Px
School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Prim’s Algorithm

Prim’s Algorithm

PrimMST(G,w):

A=0

C,:={x}

while C. is not a spanning tree
Find MWOE (u, v) of C,

A=AU{(u,v)}
C.,=C,U{v}
return A

 How to find MWOE efficiently?

 Put another way: how to find the next
node that is closest to C.?

> Use a priority queue to maintain each
remaining node’s distance to C,.

Prim’s Algorithm

PI’IIIIMST(GW) O(m1g n) using binary heap to implement priority queue
x := Pick an arbitrary node in G
for each node uin V

u.dist .= INF, u.parent := NIL, u.in .= False
x.dist :=0
PriorityQueue Q .= Build a priority queue based on “dist” values
while Q is not empty

u .= Q.ExtractMin()

g e

for each edge (u,v) in E

if v.in = False and w(u,v) < v.dist

O(n)

O(nlgn)

v.parent := u, v.dist := w(u,v) O(mlgn)

Q.Update(v, w(u,v))

Could be faster using better priority queue implementation (By using fibonacci heaps instead)

O(n)

DESIterSkeleton(G. s):
Stack O

O .push(s)

while |Q.empty()

u = Q.pop()
if lu.visited

u.visited = True
for each edge (u, v) in E

O .push(v)

BESSkeletonAlt(G. s):

FIFOQueue QO

0O .enque(s)
while |Q.empty()
u .= Q.dequeue()
if lu.visited
u.visited = True
for each edge (u, v) in E

0O .enque(v)
GraphExploreSkeleton(G, s):

GenericQueue O
Q.add(s)

while !Q.empity()
u .= Q.remove()

if lu.visited
u.visited := True
for each edge (i, v) in E
Q.addv)

DFS, BFS, Prim, and others...

PrimMSTSkeleton(G., x):
PriorityQueue QO
Q.add(x)

while 'Q.empiy()
u := Q.remove()

if lu.visited
u.visited := True
for each edge (u, v) in E
if lv.visited and ...
Q.update(v, ...)

=

O&abthk T FO 4=
PV, ZeERHS ITiEF6r
Z"x @5 School of Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Boruvka’s Algorithm

e Boruvka’s algorithm for computing MST (actually the earliest MST
algorithm):

» Starting with all nodes and an empty set of edges A.

> Find MWOE for every remaining CC in G,, add all of them to A.

> Repeat above step until we have a spanning tree.

Otakar Boruvka

Dabik T 0 R4
| BEERGHSIREFxR
9 School of ﬂnt‘e[ﬁ'gent Sofrware and Engineering

Boruvka’s Algorithm

* |s it okay to add multiple edges simultaneously?

Boruvka’s Algorithm

e |s it okay to add multiple edges simultaneously?

* But it may result in circles?

> Assuming all edge weights are distinct, if CC C; propose MWOE ¢, to
connect to C,, and C, proposes MWOE e, to connect to Cy, then ¢; = e,.

Boruvka’s Algorithm

KruskalMST(G.w): Total runtime is O(m 1g n)
G =(V,Q0)
do /

ccCount := CountCCAndLabel(G") O(n) //Do DFS/BFS, count #of CC, give ccl\ium to nodes.
fori:=1 to ccCount
safeEdgeli] := NIL
for each edge (u,v) in E(G)
if u.ccNum '=v.ccNum O(m + n) = O(m)
If safeEdgelu.ccNum] = NIL or w(u,v) < w(safeEdge[u.ccNum])
safeEdge|u.ccNum] .= (u,v)
if safeEdge|v.ccNum] = NIL or w(u,v) < w(safeEdge[v.ccNum])
safeEdge[v.ccNum| .= (u,v)
fori:=1 to ccCount
Add safeEdgeli] to E(G') On)

while ccCount > 1 O(lg n) interactions

return £(G")

O(n)

Boruvka’s Algorithm

« Why Boruvka’s algorithm is interesting?

» The number of components in G’ can drop by significantly more than a
factor of 2 in a single iteration, reducing the number of iterations below

the worst-case O(lg n).

> Boruvka’s algorithm allows for parallelism naturally; while the other two
are intrinsically sequential.

> Generalizations of Boruvka'’s algorithm lead to faster algorithms.

Summary

e The “Cut Property” leads to many MST algorithms: Assume A is included in some

MST, let (S, V — §) be any cut respecting A. If (i, v) is a light edge crossing the
cut, then (u, v) Is safe for A.

» Classical algorithms for MST, all with runtime O(m - log n):
» Kruskal (UnionFind): keep connecting two CC with min-weight edge.
> Prim (PriorityQueue): grow single CC by adding MWOE.

> Boruvka: add MWOE for all CC in parallel in each iteration.

e Can we do MST in O(m) time?

> Randomized algorithm with expected O(m) runtime exists.

Further reading

+ [CLRS] Ch.23

* [Erickson] Ch.7

Algorithms

ALGCORITHMS

EDITION

Jeft Erickson

